







# Tiltmeter for NNC

A. ALLOCCA, E. CALLONI, R. DE ROSA, <u>L. ERRICO</u>, M. ESPOSITO, G. PONTORIERE, P. RUGGI

#### Outline

- The Akinetos tiltmeter: first experimental results
- Next installation of upgraded tiltmeter in Sos-Enattos

### 'Ακίνητος: the new tiltmeter

The new tiltmeter exploits the same working principles as the prototype.

Main improvement: arm with much higher momentum of inertia: 13 kg of brass, I = 0.33 kg\*m^2, more than one order of magnitude bigger than the previous version, joint size: 0.1x3mm







## 'Ακίνητος: the new tiltmeter

Installed in the NEB, along the arm direction at the end of March 2023



# Operation from April to August



- Duty cycle of more than 50% 1364342416.0000 Mar31 2023 23:59:58 UTC
- Low correction to hold the beam in position using ITF readout

## Lowest ground tilt measurement



# Comparison between ground tilt measurements with two tiltmeters in 2019 vs 2023



### Center of mass raising to reduce the seism-to-tilt coupling



- The tiltmeter behavior simulated with OCTOPUS (P. Ruggi) and tuned to match the measured transverse resonance frequencies – pretty reliable model
- A residual seism-to-tilt coupling along the arm direction has estimated to be a factor of about 1e-3, corresponding to a residual distance between bending point and center of mass of about 50 μm.
- This distance has also been estimated looking at the coherence between the seismometers and tiltmeter signal

## Center of mass raising to reduce the seism-to-tilt coupling



The center of mass was raised by about 35  $\mu$ m to reduce its distance from the bending point and therefore reduce the seism-to-tilt coupling. Resonance frequency changed from 23 mHz to 12 mHz



## Sensitivity before/after decoupling improvement



### Sensitivity before/after decoupling improvement



## Wind effect on the tiltmeter



# Ground tilt measurement in different wind conditions





# Ground tilt measurement in different wind conditions - repeatability



Same spectrum in similar conditions: further confirmation that tilt is actually measured

WEBC

Ground tilt measurement in different wind conditions



Interpretation not always straightforward...

### Current status of Akinetos

We are <u>not</u> acquiring data since August 28<sup>th</sup> due to a <u>malfunctioning of the laser</u>, which needs to be replaced

(already ordered a new one, waiting for it to be delivered)

We plan to fix everything and put it back in operation before Virgo joins O4

#### Outline

- Akinetos: first experimental results
- Next installation of upgraded tiltmeter in Sos-Enattos



## The new tiltmeter in Sos-Enattos

- Improved design to equalize the optical paths of the two interferometer arms → better common noise rejection
- Mirror on the arm spaced by 25cm rather than 10cm → sensitivity improvement by a factor 2.5
- Optical lever installation to monitor slow drifts
- More screens to prevent scattered light/ghost beams to couple into the ITF main path
- Allow remote control also for the vertical control of the center of mass positioning to improve shift-to-tilt decoupling
- New design of the electronics (on PCB) → lower electronics noises

## New design of the electronics (on PCB)







# The new tiltmeter in Sos-Enattos

The first installation will be close to the Archimedes experiment. Twofold advantage:

1- compare the reference arm measurement with tiltmeter measurements

2 – compare the tiltmeter measurement with prototype measurements, which is installed about 10 m away, for a better study of the "coherence length"

- New vacuum chamber already delivered on site
- ☐ Mechanical part construction ongoing, ready by the end of the year
  - ☐ First installation at the beginning of 2024

#### Conclusions and future perspectives

- The **new large-band tiltmeter** has been installed in Virgo will be taking data during O4 close to the North End tower
- > Seism-to-tilt coupling is still one of the main problems to face, but we know how to act, possibly add a remote control to change center of mass positioning also in Virgo tiltmeter
- > OCTOPUS simulations will be used to improve the tiltmeter performances
- A new version of this tiltmeter is being built to be installed in Sos-Enattos. Many improvments have been foreseen to further reduce power and frequency noise coupling. We expect a much lower noise level than Virgo at the Sos-Enattos site
- Further steps towards a more **compact design** so that, if necessary, a tiltmeter can be inserted directly into the new ET suspension chamber

# Extra slides

#### Tiltmeter prototype - mechanics

 Beam balance, 50 cm long aluminum arm with brass cylinders 11 cm long inside, with low momentum of inertia (0.02 kg\*m^2)





• Tiltmeter arm is suspended through Cu-Be flexible joints, 100μm x 500μm in section, very similar in design to LIGO tiltmeters (*Venkateswara et al., 2014*) which allow to keep the resonance frequency below 20 mHz





## Tiltmeter – first improvements



#### Tilt measurement comparison between Virgo and Sos-Enattos



## ITF robustness against tilts



- (a) The interferometer is aligned while the balance arm is horizontal
- (b) An arm tilt α would misalign the interferometer
- c) The presence of lenses in both arms permits the realignment by moving vertically by an amount  $\delta y = L_f \alpha$  the input laser beam, where  $L_f$  is the lens focal length

## 'Ακίνητος: the large-band tiltmeter







## Sensitivity before/after center of mass raising



# Effect of actuation noise @low frequency



# Effect of actuation noise @low frequency

