The analytical equations of the Pendulum-Inverted Pendulum oscillator

The Cartesian coordinates of the two masses are

$$\begin{cases} x_1 = l_1 \sin(\theta) + x_P(t) \\ y_1 = -l_1 \cos(\theta) \end{cases}$$

$$\begin{cases} x_1 = l_1 \sin(\theta) + x_P(t) \\ y_1 = -l_1 \cos(\theta) \end{cases}$$

$$\begin{cases} x_2 = x_1 - l_2 \sin(\phi) \\ y_2 = y_1 + l_2 \cos(\phi) \end{cases}$$

$$\begin{cases} x_1 = l_1 \sin(\theta) + x_P(t) \\ y_1 = -l_1 \cos(\theta) \\ x_2 = l_1 \sin(\theta) - l_2 \sin(\phi) + x_P(t) \\ y_2 = -l_1 \cos(\theta) + l_2 \cos(\phi) \end{cases}$$

An elastic potential energy $U_e = \frac{1}{2} \kappa (\theta - \phi)^2$ is stored in the spring.

Based on the second order development of x_1 , y_1 , x_2 , y_2 an approximate Lagrangian can be written in terms of θ and ϕ .

Piero Chessa

BHETSA Meeting Pisa, 11/11/2022

More convenient variables can then be introduced such as

$$\begin{cases} x = l_1 \theta - l_2 \phi \\ z = l_2 \theta + l_1 \phi \end{cases}$$

The analytical equations of the Pendulum-Inverted Pendulum oscillator

In terms of the variables
$$\begin{cases} x = l_1 \theta - l_2 \phi \\ z = l_2 \theta + l_1 \phi \end{cases}$$

the Lagrange's equations of the system can be summarized as

$$\mathbf{M} \begin{pmatrix} \ddot{x} \\ \ddot{z} \end{pmatrix} = -\frac{g}{l_2} \mathbf{K} \begin{pmatrix} x \\ z \end{pmatrix} - \mathbf{N} \, \ddot{x_P}$$

where the constant matrices M, K and N are, respectively,

$$\mathbf{M} = \begin{pmatrix} \mu \lambda^4 + (\lambda^2 + 1)^2 & \mu \lambda^3 \\ \mu \lambda^3 & \mu \lambda^2 \end{pmatrix}$$

$$\mathbf{K} = \begin{pmatrix} (\mu + 1)\lambda^3 - 1 + \gamma(\lambda^2 + 1)^2 & (\mu + 1)\lambda^2 + \lambda - \gamma(\lambda^2 - 1) \\ (\mu + 1)\lambda^2 + \lambda - \gamma(\lambda^2 - 1) & (\mu + 1)\lambda - \lambda^2 + \gamma(\lambda - 1)^2 \end{pmatrix}$$

$$\mathbf{N} = (\lambda^2 + 1) \begin{pmatrix} (\mu + 1)\lambda^2 + 1 \\ \mu \lambda \end{pmatrix}$$

and some dimensionless parameters have been introduced:

$$\mu = \frac{m_1}{m_2} \quad , \quad \lambda = \frac{l_1}{l_2} \quad \gamma = \frac{\kappa}{m_2 g l_2} .$$

Oscillations

The equation describes a forced 2-DoF oscillator. Here we focus on the free oscillations (although the complete transfer function is available for further study).

$$\mathbf{M} \begin{pmatrix} \ddot{x} \\ \ddot{z} \end{pmatrix} = -\frac{g}{l_2} \mathbf{K} \begin{pmatrix} x \\ z \end{pmatrix} - \mathbf{M} \ddot{z}_{P} \qquad \qquad \begin{pmatrix} \ddot{x} \\ \ddot{z} \end{pmatrix} = -\frac{g}{l_2} \mathbf{M}^{-1} \mathbf{K} \begin{pmatrix} x \\ z \end{pmatrix}$$

The Laplace transform of the equation gives

$$s^{2} \begin{pmatrix} \widetilde{x} \\ \widetilde{z} \end{pmatrix} = -\frac{g}{l_{2}} \mathbf{M}^{-1} \mathbf{K} \begin{pmatrix} \widetilde{x} \\ \widetilde{z} \end{pmatrix} \quad \text{or} \quad \left(s^{2} + \frac{g}{l_{2}} \mathbf{M}^{-1} \mathbf{K} \right) \begin{pmatrix} \widetilde{x} \\ \widetilde{z} \end{pmatrix} = 0.$$

By putting the M⁻¹K matrix in the diagonal form, one finds the natural frequencies of the system and the eigen-states of the oscillator that are presented hereafter.

All plots are worked out with $l_2=1$ m. All frequencies scale as $\frac{1}{\sqrt{l_2}}$

The Pendulum-Inverted Pendulum oscillator with a constant vertical load

Let's suppose that a load is suspended to the device and that this load can be approximated with a constant vertical force.

The Lagrange's equations of the system become

$$\mathbf{M} \begin{pmatrix} \ddot{x} \\ \ddot{z} \end{pmatrix} = -\frac{g}{l_2} (\mathbf{K} + \mathbf{K}_T) \begin{pmatrix} x \\ z \end{pmatrix} - \mathbf{N} \ddot{x_P}$$

where a new constant matrix **K**_T is introduced

$$\mathbf{K}_{T} = \nu \begin{pmatrix} \lambda^{3} - 1 & \lambda(\lambda + 1) \\ \lambda(\lambda + 1) & \lambda(1 - \lambda) \end{pmatrix}$$

along with the new dimensionless parameter $v = \frac{T}{m_2 g}$.

The natural modes of the loaded system can thus be found by solving

$$\left[s^2 + \frac{g}{l_2} \mathbf{M}^{-1} (\mathbf{K} + \mathbf{K}_T)\right] \begin{pmatrix} \widetilde{x} \\ \widetilde{z} \end{pmatrix} = 0$$

10¹

 γ

10¹

10¹

 γ

Back to μ =1.59, ν = 4 $\mathbf{Re(f_2)}\,\mathbf{[Hz]}\qquad l_2\mathbf{=}1\;\mathrm{m}$ Re(f,) [Hz] Click to see modes 1.8 1.8 Modes $\mu = \text{1.59, } \gamma = \text{5.56, } \lambda = \text{1.55, } \nu = \text{4}$ Animated with 3x speed $f_1 = 0.0832 \text{ Hz}$ $f_2 = 0.0745j Hz$ 0.5 0.5 eigen-z 10¹ -0.5 -0.5 -1 -1.5 -1.5 -2 -2 eigen-x -2.5 -0.5 0 0.5 -0.5 0 0.5 Modes 10¹ $\mu = 1.59, \, \gamma = 14, \, \lambda = 1.55, \, \nu = 4$ Animated with 3x speed $f_1 = 0.153 \text{ Hz}$ $f_2 = 0.0407 \text{ Hz}$ 0.5 0.5 -0.5 -0.5 6 -1.5 -1.5 100 100 -2 -2 10¹ 10¹ -2.5 -2.5 -0.5 0 -0.5 0

Variable definitions and values

System variables:
$$\begin{cases} x = l_1 \theta - l_2 \phi \\ z = l_2 \theta + l_1 \phi \end{cases}$$

Parameter definitions:	$\mu = \frac{m_1}{m_2}$	$\lambda = \frac{l_1}{l_2}$	$\gamma = \frac{\kappa}{m_2 g l_2}$	$v = \frac{T}{m_2 g}$
Interval:	1 to 4	1 to 2	1 to 16	0 to 4
No of values:	4	64	64	2
Equally spaced in:	Log scale	Log scale	Log scale	

All plots are worked out with l_2 =1 m. All frequencies scale as

$$\frac{1}{\sqrt{l_2}}$$

 f_T/f_0 $T = 4 \cdot m_2 g$

